Las pruebas de proporciones son adecuadas cuando los datos que se están analizando constan de cuentas o frecuencias de elementos de dos o más clases. El objetivo de estas pruebas es evaluar las afirmaciones con respecto a una proporción (o Porcentaje) de población. Las pruebas se basan en la premisa de que una proporción muestral (es decir, x ocurrencias en n observaciones, o x/n) será igual a la proporción verdadera de la población si se toman márgenes o tolerancias para la variabilidad muestral. Las pruebas suelen enfocarse en la diferencia entre un número esperado de ocurrencias, suponiendo que una afirmación es verdadera, y el número observado realmente. La diferencia se compara con la variabilidad prescrita mediante una distribución de muestreo que tiene como base el supuesto de que Ho es realmente verdadera.
En muchos aspectos, las pruebas de proporciones se parecen a las pruebas de medias, excepto que, en el caso de las primeras, los datos muestrales se consideran como cuentas en lugar de como mediciones. Por ejemplo, las pruebas para medias y proporciones se pueden utilizar para evaluar afirmaciones con respecto a:
1) Un parámetro de población único (prueba de una muestra)
2) La igualdad de parámetros de dos poblaciones (prueba de dos muestras), y
3) La igualdad de parámetros de más de dos poblaciones (prueba de k muestras). Además, para tamaños grandes de muestras, la distribución de muestreo adecuada para pruebas de proporciones de una y dos muestras es aproximadamente normal, justo como sucede en el caso de pruebas de medias de una y dos muestras.
Prueba de proporciones de una muestra
Cuando el objetivo del muestreo es evaluar la validez de una afirmación con respecto a la proporción de una población, es adecuado utilizar una prueba de una muestra. La metodología de prueba depende de si el número de observaciones de la muestra es grande o pequeño.
Como se habrá observado anteriormente, las pruebas de grandes muestras de medias y proporciones son bastante semejantes. De este modo, los valores estadísticos de prueba miden la desviación de un valor estadístico de muestra a partir de un valor propuesto. Y ambas pruebas se basan en la distribución normal estándar para valores críticos. Quizá la única diferencia real entre las ambas radica en la forma corno se obtiene la desviación estándar de la distribución de muestreo.
Esta prueba comprende el cálculo del valor estadístico de prueba Z
Posteriormente este valor es comparado con el valor de Z, obtenido a partir de una tabla normal a un nivel de significación seleccionado.
Como ocurrió con la prueba de medias de una muestra, las pruebas de proporciones pueden ser de una o dos colas.
En una empresa 6 de 10 empleados usan los transporte de la empresa. se necesita probar a un nivel de significación de 0,025, respecto a la alternativa de que la proporción real de los empleados que usan los transporte es mayor de lo que afirma, tomando una muestra de 140 empleados se reveló que 70 de ellos usan los transportes de la empresa. La población es de 350 empleados.
Con lectura en la tabla para un área de 0,025 le corresponde
Por lo tanto se debe utilizar la formula con el factor finito de corrección
Prueba de proporciones de dos muestras
El objetivo de una prueba de dos muestras es determinar si las dos muestras independientes fueron tomadas de dos poblaciones, las cuales presentan la misma proporción de elementos con determinada característica. La prueba se concentra en la diferencia relativa (diferencia dividida entre la desviación estándar de la distribución de muestreo) entre las dos proporciones muestrales. Diferencias pequeñas denotan únicamente la variación casual producto del muestreo (se acepta H0), en tanto que grandes diferencias significan lo contrario (se rechaza H0). El valor estadístico de prueba (diferencia relativa) es comparado con un valor tabular de la distribución normal, a fin de decidir si H0 es aceptada o rechazada. Una vez más, esta prueba se asemeja considerablemente a la prueba de medias de dos muestras.
Una aplicación de mensajería instantánea que presta servicios en Venezuela y Colombia quiere implementar nuevos términos y condiciones en su aplicación, y se necesita saber si los usuarios están de acuerdo con la aplicación de estas condiciones por lo cual se hizo un estudio que muestra que en Venezuela 18 de 20 usuarios y en Colombia 14 de 20 usuarios están de acuerdo con los nuevos términos y condiciones ¿Es posible concluir que un nivel de significación de 0,05 que los usuarios están a favor de las nuevas políticas y condiciones de la aplicación en Venezuela y Colombia?
Con lectura en la tabla para un área de 0,025 le corresponde un valor
Calculando la proporción muestral se obtiene que:
calculando
Buena teoría con sus respectivos ejemplos
ResponderEliminar